
MACHINE SCHEDULING WITH AN AVAILABILITY
CONSTRAINT

Chung-Yee Lee-
Department of Industrial and Systems Engineering

University of Florida
Gainesville, FL 326 11

February 1995
Revised: July 1995

This research was supported in part by NSF grant DDM 9201627

ABSTRACT

Most literature in scheduling assumes that machines are available simultaneously at all
times. However, this availability may not be true in real industry settings. In this paper, we
assume that the machine may not always be available. This happens often in the industry due to a
machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling
period. We study the scheduling problem under this general situation and for the deterministic
case.

We discuss various performance measures and various machine environments. In each
case, we either provide a polynomial optimal algorithm to solve the problem, or prove that the
problem is NP-hard. In the latter case, we develop pseudo-polynomial dynamic programming
models to solve the problem optimally and/or provide heuristics with an error bound analysis.

1. INTRODUCTION

Due to the popularity of Just-In-Tie philosophy and Total Quality Management concept,
on-time delivery has become one of the crucial factors for customer satisfaction. Scheduling plays
an important role in achieving on-time delivery. In the last four decades, many papers have been
published in the scheduling area, (see for example, survey papers by Graves(l981), Lawler, et
al(1993) and Herrmann, Lee and Snowdon(l993)). Recently this area has become even more
popular. This popularity can be seen from the fertile publication of related books such as Baker
(1993), Blaczwicz et al. (1993) Morton and Pentico (1993), Tanaev, Sotskov and Strusevich
(1994) and Pinedo (1995).

Journal of Global Optimization 9: 395-416, 1996.
0 1996 Kluwer Academic Publishers. Printed in the Netherlands.

395

396 CHUNG-YEE LEE

Most literature in scheduling assumes that machines are available simultaneously at all
times. However, this availability may not be true in real industry settings. In this paper, we
assume that the machine may not always be available. This happens often in the industry due to a
machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling
period. We study the scheduling problem under this general situation and for the deterministic
case.

We assume that machine j is unavailable during the period from sj to tj (0 2 sj 5 tj).
Namely, we assume that there is only one unavailability period during the scheduling horizon for
machine j. Since we are studying the deterministic model, it is reasonable to assume that there is
only one preventive maintenance during the scheduling horizon. Furthermore, we assume that for
the multiple machines problem, one machine is always available. Note that the special case with sj
= 0 means that machine j is not available until 5. This happens for instance in the case where the
machine continues to process those unfinished jobs that were scheduled in the previous planning
period.

Although this problem is important as it happens often in industry, there are only a few
articles in the scheduling area that deal with this problem. Schmidt(l984) studies an n job m
parallel machine scheduling problem where each job has a deadline and each machine has different
wai!abilhy intervals The purpose is to construct a feasible pre-emptive schedule. He presents an.
O(nmlogn) time algorithm to find a feasible pre-emptive schedule whenever one exists. Adiri et
al. (1989) consider the single machine scheduling problem with the objective of minimizing the
total completion time where the machine is not available during some intervals. They studied both
stochastic case where the location and duration of the unavailability periods are random, and the
deterministic case where the machine unavailability is known in advance. For the deterministic
case they show that the problem is NP-hard if there is only one unavailability during the
scheduling period and if a job did not finish before the machine unavailability then the job needs to
be restarted again. Lee (1991) studies the parallel identical machines scheduling problem of
minimizing the makespan where machines may not be available at time zero; i.e. sj = 0 and 9 2 0
for all j. He shows that the classical Longest Processing Time (LPT) algorithm will have a tight
error bound l/2,. He then provides a modified LPT algorithm with error bound equal to l/3.
Kaspi and Montreuil (1988) and Liman (1991) show that the Shortest Processing Time (SPT)
algorithm is an optimal policy for multiple machines total completion time problem with non-
simultaneous machine available times(9 = 0 for all j). Lee and Liman (1992) study the
deterministic model of the problem of Adiri et al. (1989). They provide a simpler proof of NP-
hardness and show a tight error bound for the SPT heuristic. Lee and Liman (1993) study the
two-parallel-machine scheduling problem of minimizing the total completion time where one
machine is not available from a particular instant, i.e. s1 = t, = 0 and st > 0, tZ = 0~. They prove
that the problem is NP-hard and use dynamic programming to solve it. Mosheiov(1994) studies

MACHINE SCHEDULING WITH AN AVAILABILI-IY CONSTRAINT 397

the same problem under the condition that machine j is available in the interval [xi, yj] where 0 <
xi < yj. He shows that for the m-machine problem SPT is asymptotically optimal as the number of
jobs increases.

A different but somehow related problem is the scheduling problem with time windows,
In such problems, each job should be processed within certain window(see for example, Lei and
Wong 1990 and Kraemer and Lee 1993). Namely, the availability constraint is imposed on jobs
rather than machines.

In this paper, we study the problem for different performance measures (makespan, total
weighted completion time, tardiness, and number of tardy jobs) and different machine situations
(single machine and parallel machines). In each case, we either provide a polynomial optimal
algorithm to solve the problem, or prove that the problem is NP-hard. In the later case, we
develop pseudo-polynomial dynamic programming models to solve the problem optimally and/or
provide heuristics with an error bound analysis. Please see Table 1 for a summary. This work is
part of on-going research on the machine availability constraint problem. In the companion paper,
Lee (1995) studies the two-machine flowshop scheduling problem with an availability constraint
on one machine and the objective of minimizing makespan. He proves that the problem is M-hard
and proposes pseudo-polynomial dynamic programming to solve the problem optimally. He also
provides two O(nlogn) heuristics with an error bound analysis. The first (second) heuristic is used
to solve the problem with the availability constraint imposed on machine 1 (‘2): and has a worst
case error bound of l/2 (l/3 respectively).

Two cases, resumable and nonresumable, are discussed in this paper. We call a job
resumable ifit cannot finish before the unavailable period of a machine and can continue after the
machine is available again. On the other hand, we call it nonresumuble if it has to restart, rather
than continue. In the next section, we first define the notation. We then deal with the resumable
and the nonresumable cases in Section 3 and 4 respectively. Section 5 briefly describes future
research topics.

398

Table 1
Summary of Complexity Classification

CHUNG-EE LEE

I

Problem
IIMiXi

l/r-a/C,,

l/r-a/L-

I/r-a/W,

l/r-a/Zw,Ci

Pm/r-a/C,,

PUr-aEw,Ci

F2/r-a(M,)/C,,

Fzlr-a(M,)/C,,

Complexity Solution Reference
P SPT 3.1.1.

P Arbitrary Sequence 3.1.1.

P EDD 3.1.1.

P Moore-Hodgson Algorithm 3.1.1.

NP Dynamic Programming, 3.1.2.

even if w,-Ti Heuristics and Error Bounds
NP Heuristics and Error Bounds 3.2.1.

NP Dynamic Programming 3.2.2.

NP Dynamic Programming, Lee (1995)
Heuristics and Error Bounds

NP Dynamic Programming, Lee (1995)

l/M-a/c,,

Heuristics and Error Bounds

NP Heuristics and Error Bounds 4.1.1.

l/M-a/L,, NP Heuristics and Error Bounds 4.1.2.

l/M-a/zui NP Heuristics and Error Bounds 4.1.2

l/nr-a/cw,Ci
I I

NP Heuristics and Error Bounds 1 Adiri.et.al(l989)
1 Lee and Liman(199 1

PdN-a/c,,

P2hr-a/xwici

NP * Heuristics and Error Bounds 4.2.1.

NP Dynamic Programming 4.2.2.

FZ/nr-a(M,)/C,,

F2/nr-a(MJ)/C,,

NP Dynamic Programming Lee (1995)
Heuristic and Error Bound

NP Heuristic and Error Bound Lee (1995)

2. NOTATION

We are given m machines and n jobs with the following notation.

Ji : Job i, i = l,..., n.

Pi : Processing time for Ji.

MS = k p, , total processing time of n jobs,
i=l

MACHINE SCHEDULfNG WITH AN AVAILABILITT CONSTRAINT 399

Ai = ip,, the sum ofprocessing time ofjobs in (Jl, Jz,....,Ji},
k=I

4 : Due date for J?

ci : The completion time for Jb
wi . . Weight for Ji. Hence. xwiCi is the total weighted completion time.

Li : Lateness for Ji, Li = Ci - dp

%7X : Makespan = Max(C, i = l,..., n.}

Lax =Max{Li, i = I,..., n.}

ui = 1, ifLi > 0, and 0 otherwise. Hence CU; denotes total number of tardy jobs.

Mi : Machine j, j = l,..., m.
So t,. : Mj is unavailable from sj to fi for all j, where 0 I 3 I $

Jlkl : The k-th job in a given sequence.

Whenever C,, is the performance measure, we use C* to denote the optimal makespan and use
C, to denote the makespan of the problem if we apply heuristic H to it. To be concise, we follow
the notation of Pinedo (1995), extended to include resource constra nts. This notation consists
of three fields a/p/y, where a denotes the machine condition, p denotes problem characteristics
and yrepresents the performance metiiire to be optimized. In particular, a = 1 and P denote
single machine and parallel machines respectively. The second field can represent dynamic
arrivals, special precedence constraints or special availability constraints, and the third field, y, can
be C,, L,, EwiCi or CUi. In this paper, we will use r-u in the second field to denote a
resumable availabiiiry constraint, where M, is r.ct avaiiabie fiom sj LO tj for aCj *arid z job is
resumable ifit cannot be finished before So Similarly, p = nr-a denotes a nonresumable availability
constraint. For example, l/r-aEwiCi:denotes the problem of minimizing total weighted
single machine with a resumable availability constraint.

3. THE RESUMABLE AVAILABIIXIY CONSTRAINT

In this section, we study the complexity, and provide algorithms to minimize different
objective tinctions for different problems with a resumable availability constraint. In particular,
we discuss the single machine and parallel machine problems.

400

3.1 Single Machine Problems

CHUNG-YEE LEE

3.1.1. l/r-a/C,, l/r-a/cCi, l/r-a/L- and l/r-tilJi

It can be checked by a simple job exchange scheme that for single machine problems, l/r-

G?&?XY l/r-a/& and l/r-a/L,, can be solved optimally by any sequence, the Shortest
Processing Tie (SPT) algorithm(sequencingjobs in fhe nondecreasing order ofpi), and the
Earliest Due Date (EDD) rule(sequencingjobs in the non&creasing order ofdi), respectively.

The l//cu, problem can be solved by Moore-Hodgson’s algorithm (Baker 1993); restated
as follows for convenience.

Moore-Hodeson’s algorithm for l/EUi

Step 0: Set N= (JI, J,...J,,).
Step 1: Sequence the jobs of N in EDD order. If there is no tardy job in N then stop. Otherwise,

find the first tardy job, say Jlkl,. Among the first k jobs find the job with largest processing
time, delete it from N and assign it at the end of the sequence. Continue until no tardy

--jobs exist in set N.

For our l/r-tiUi problem, we can apply Moore-Hodgson’s algorithm to solve it optimally
by noting that for those jobs finished after sl, we need to add the unavailable time period (tl- sl)
to their completion times.

3.1.2. l/r-a/cWiCi
It is well known that l//c(wiCi) can be solved optimally by the WSPT(Weighted Shortest

Processing Time) algorithm (sequencing jobs in the nondecreasing order of pbi)(see for
example, Pinedo 1995). However, it is interesting to note that addition of the availability
constraint will make this problem NP-hard. We will prove this by transforming the Partition
Problem, a well-known NP-hard problem (Garey and Johnson 1979), into our problem.

Since we will use the Partition Problem for the proof of NP-hardness of several problems
studied in this paper, we first state the Partition Problem.

Partition Problem

Instance: A finite set of positive integers al,al,...,a,, which total to 2A.

Question: Can this set be partitioned into two disjoint subsets such that the sum of each subset is
equal to A?

MACHINE SCHEDULING WITH AN AVAILABILITY CONSTRAINT 401

For any schedule o, let S2 be the set ofjobs that finished after tl and let Jtfl be the i-th job
in the schedule. Before we prove the NP-hardness of the problem, we state the following property
that will be used later.

Property: For any schedule cr, the corresponding total weighted completion time is given by

Proof: Suppose that the first i jobs finished no later than t, and the remaining jobs finished after
tl. Namely, Jli+,I is the first job in S2. Then we have

F, (0) = W[I]P[I] + W[Z] @[,I+ P[2]) + .-. + W[i] @[I)+ PI21 + .-. + l$])
+ Wli+~l (PY~ Q21+ *** + p[i+J] f tJ - SJ> + -em + “‘[“I (P[Jp P[2] + me* + P[n] + tJ - ‘J)

= i+, w[rlp[~j + iFj w[i]Pbj + (2 w[+J-sJ)
k-i+,

QED.

The following theorem shows that even the special case is M-hard, hence our problem is
NP-hard.

Theorem 1: I/r-aLZwiCi is NP-hard even if w, = pi for all i.

Proof: We will prove the theorem by transforming the Partition Problem into our problem. Given
the instance of the Partition Problem, generate an instance with n jobs for our problem.

pi = a, i =l,..., n.
wi = a,, i = l,..., n.
sJ= A and tJ = 2A.

Does there exist a schedule with total weighted completion time equal to B = $ at + c (ai aj)
i=l i>j

+ A2 ?

j If there exists a partition SJ and S,, then schedule the jobs corresponding to S1 and then S2.
Since ai = pi for all i, any sequence is a WSPT sequence. Since kF; = k$; =A, the last job

1 1

402 CHUNG-YEE LEE

in S.1 finishes at s, = A, and the total weighted completion time, by Equation (l), is equal to

e Suppose that there exists a schedule with total weighted completion time 2 Cqz + C ai%
i=I i>j

+ AZ. Consider any schedule, let S, be the set ofjobs finished no later than tl and let S2 be the set
of the remaining jobs. Again by Equation (I), the total weighted completion time is equal to

n
C ai + C aiaj + (tl - ~1) which also equals i at + C (aiaj) +

i=l i>j i=l i>j

hypothesis, there exists one schedule with total weighted completion time equal to B = ; at +
i=l

& (a+$ + A4 and h ence for such a schedule we must have C ak = A. Thus we have a
k eSz

partition. QED.

Since the problem is NP-hard, it is justifiable to try a heuristic method. The most intuitive
heuristic is the WSPT algorithm; hence, we will analyze its worst case error bound. Lel
F&VSPT) and F,(WSPT, tr = s,) denote the total weighted completion time by using the WSPT
algorithm to this problem with andwithout availability constraint reqectively, and let F,* denote
the optimal total weighted completion time.

Lemma 1: Jfthere exists a job Jj that started before s, and finished after tl in the WSPT
algorithm then F,+,(WSPT) - F,* 5 w,(t] - s,).

Proof: First note that the first two terms of Equation (1) are the total weighted completion time
of the problem without the availability constraint. Hence these two terms can be minimized by the
WSPT algorithm. Narneiy, F,(WSPT, t, = sl) is the minimum possible value of the fnst two terms
of Equation (1). Note also that in the WSPT algorithm, we sequence the jobs in nondecreasing
order of pi/wi , or equivalently nonincreasing order of wi/pr. We can consider wi/pi as the weight
per unit processing time. Namely, the highest weighted job is assigned first in WSPT. Hence the
total weight of jobs finished after tl in “any” schedule can not be less than
r -I

c wk - wj , where S,(WSPT) is the corresponding set S, of WSPT. Therefore, we
kd2WSPT) J

have

MACHINE SCHEDULING WITH AN AVAILABILITY CONSTRAtNT 403

= F,(WSPT) - w,(tl - s,).

Namely F,(WSPT) - F,* < w,(t, - sl). QED.

Note that ifin the WSPT schedule there exists no job that started before s, and finished

after tl, namely, there exists one job Ji with Ci = s,, then 1 1 cwk is the smallest possible
k~,(wSPT)

total weight we can get in S,, and hence the WSPT schedule is optimal.

Corollary 1: If we apply the WSPT algorithm to the l/r-a/CwiCi problem and have one job Ji
with Ci = s,, then the WSPT schedule is optimal.

Lemma 2: F,(WSPT)/F,* can be arbitrarily large even ifwi = pi for all i.

Proof:Letp1=wl=l,pt=w2=n,sl=n,t,=n + n*. Using the WSPT algorithm we may have
J, fol!owed by J, with total weighted completion time, F,(WSPT) = 1-l -1 (nz :. t? + l).n. = rr’ Y
ns + n + 1. However, in the optimal solution there should be J2 followed by J, with total
weighted completion time, F,*= nn + (r-r2 + n + I).1 = 2n2 + n + 1. It can be seen that
F,(WSPT)/F,* can be arbitrarily large as n approaches infinity. QED.

It is interesting to observe, by (I), that in order to improve the error bound, we may want
to “squeeze” as much weight as possible into (0,~~) which in turn is similar to the Knapsack
Problem. Hence we may adopt those simple greedy heuristics used in the Knapsack Problem (see
for example, Sal-6 1975). The following is the combine-algorithm for the greedy heuristics.

Combine-Algorithm:

(i) Use the WSPT algorithm, and let the corresponding objective value be F,,.(WSPT).

(ii) Reindex the jobs in the WSPT order. Then assign jobs, as many as possible, to be processed
in (0,~~). Assign the remaining jobs in the WSPT order. Let the corresponding objective
value be F,.

(iii) Reindex the jobs in a Largest Weight order, that is, WI 2 w2 zz t w,, and then assign jobs,
as many as possible, to be processed in (0,~~). Reschedule those jobs in the WSPT order and
also assign the remaining jobs in the WSPT order. Let the corresponding objective value be

Fw2.

(iv) Let F,(COh4B) = min { FflSPT), F,, F,},

404

Theorem 2: F,(COMB)/F,* can be arbitrarily large.

CJSUNG-YEE LEE

Proof: Consider a problem with the following instance.
PI = ~3 =... = pn = 1, P~+I = n, pn+2 = n2,

w, = w2 =... = wn = n, w,,, = n, wn+2 = nz,
s, = d + n and tl = I? + n2 + n.

The optimal solution will sequence the jobs in J,,...,J,, Jn+2 and then J,,+I with total
weighted completion time equal to (n(n+l)/2)n + (n2 + n)n2+ (d + n2 + n+n)n = 2n4 + (5/2)n3 +
(5/2)n2 (See Figure la). If we use Step (i) or Step (ii) of the Combine-Algorithm we may get, in
both cases, the sequence J, ,..., J,, Jn+l and then J”+2 with a total weighted completion time equal
to (n(n+l)/2)n + (2n)n+ (n3 + d + n + n)n2 = nj + n4 + (5/2)n3 + (5/2)n2 (See Figure lb). If we
use Step (iii) of the Combine-Algorithm, we may get the sequence Jn+2, J,,+, and then J,,J,,...,J,,,
with a total weighted completion time equal to (nq(nq + (n2 +n)n + (n3 + n2+ n +l)n+(n3 + n2+ n
+2)n++ (n3 + n2+ n +n)n = (n4 + n3 + n3 + (n3 + n2 +n)d + (n(n+l)n)n = n5 + 2n4+ (5i2)n3
+ (3/2)n2 (see Figure lc). Jn all three cases, we can see that F,(COMB)/F,* can be arbitrarily
large 2s n approaches in!?ni!y. QEC.

12 n n +n 2 n3 +n2+n n3 +n2+2n

Figure la: Optimal Solution

12 n 2n n2 +n n3 +n2+n n3 +n2+2n

Figure lb: Schedule of Steps (i) and (ii)

Figure lc: Schedule of Step (iii)

MACHINE SCHEDULING WITH AN AVAILABILITY CONSTRAINT 405

Theorem 2 implies that if we want to improve the error bound, a more complicated
heuristic is required. Recall that Theorem 2 shows that our problem is NP-hard even if pi = Wi for
all i. The following lemma shows that if pi = wi for all i then the error bound for using Step (iii)
of the Combine-Algorithm is only 1.

Lemma 3: Ifp, = wj for all i, and we use Step (iii) of the Combine-Algorithm, we will have (F,I
- F,*)/ F,* < 1 and the bound is tight.

Proof: Since pJwi = 1 for all i, any job sequence is in the WSPT order. Hence Lemma 1 is true
for any sequence. Use Step (iii) of the Combine-Algorithm, and let Jibe the first job that cannot
fit in before sI, The maximum error is not greater than p,{tl - sI). However, since we assign the
jobs in a Largest Weight order, all the jobs assigned before Jj have weights no less than We Hence
in the optimal solution there must exist at least one job, Jb with wk 2 wj and Ck > tl. Namely, F,*
2 wktl 2 w;.t: - sr) > F, - F,*. To show that the bound is tight, consider a example with the
following instance;
pl = wl= n+l,
pz=wz=n,
p3=w3=n,

sI = 2n and tl = 2n f n2.
The optimal solution will sequence the jobs in J2, J3, and then J, with total weighted

completion time equal to F,*= n2 + 2n2 + (n2+2n+n+l)(n +l)= n3 + 7n2 + 4n +l. If we use Step
(iii) of the Combine-Algorithm we may get the sequence J,,J2,J3 with a total weighted completion
time equal to F,, = (n+l)(n+l) + (“2 + 2n+l)n + (n2 + 2n+l+n)n = 2n3 + 6n2 + 4n +l. Hence
(Fw2 - F,*)/ F,* approaches 1 as n approaches infinity. QED.

Dynamic Programming for l/r-a/ CwjC,

Now we find an optimal solution by using dynamic programming. We first establish an
optimality property.

Lemma 4: There exists an optimal solution such that those jobs finished no later than sl follow
the WSPT order, and those jobs finished after si also follow WSPT order.

Proof: This lemma can be proved by an exchange scheme. We omit the detailed proof here by
noting that it is possible that in the exchange procedure, we may move one job finished after t,
to end up finished before s,. In such a case, we can reorganize the order for those jobs finished
before s, by the WSPT order without increasing the objective function, and Lemma 4 is true.

QED.

406 CHUNG-YEE LEE

Remark: Lemma 4 implies that we can first sort the jobs in the WSPT order and then apply
dynamic programming to solve it, as we will do in the following.

Dvnamic Promamming Algorithm

Reindex the jobs into WSPT order, and recall that A, = i pj.
j=l

Define p&t) as the minimum total weighted completion time if we have scheduled jobs f+om
II up to Ji, the total processing time finished before s1 is t, and the first job finished after tl
starts at time s.

f’(i,t)= min{/‘(i-1,t-p,)+wJ, f’(i-l,r)+W,[S+(Ar-~)+(1,-sr)l}, ifs+(A.-o>s,
f’(i-1,r-p,)+wJ otherwise.

where S = Si - n r-...>S], P -= mz{Pi: i =I rll ,..-1- ,,
i=l ,...,n, and
t = o,...,sp

Initial Condition: For each s,

1yt =p,

yt=o

otherwise

Optimal solution: Min P(n,t) over all s = s1 - p -..., sI, and t = 0 ,..., s

Justification: We can either assign job Ji to be finished before s, or after s,. The former case
will result in the objective function P(i - 1, t - pi) + wit and the other case will result in the
objective fimction P(i - 1, t) + w,(s+& - t + t, - sl). Note that we have tried all possible values of
s and hence have covered all possible cases.

and s, possible t in the fUnctional Complexity: Since there are p- possible s, n possible i,
equation, the complexity is O(np,, asI,).

3.2 Parallel Machine Problems

3.2.1 Pm/r-a/C,,,,

Note that the problem Pm//C,, where there is no availability constraint, is a classical
parallel machine scheduling problem and is NP-hard. Since our problem is more general than

MACHINE SCHEDULING WITH AN AVAILABILITY CONSTRAINT 407

PldIC,, it is obviously NP-hard. A special case, where 3 = 0 for all j and 5 may not be zero, has
been studied by Lee (1991). He shows that the classical LPT algorithm will have a tight error
bound of l/2. He then provides a Modiied LPT (MLPT) algorithm with error bound equal to l/3.
The MPLT treats each ti as a special job, and then applies the LPT algorithm to all jobs.
Whenever, a machine may be assigned more than one such special job then an exchange rule is
applied to ensure that there is at most one special job in each machine. Finally, all special jobs are
sequenced fust in each machine.

Among those heuristics for the Pm//C,, problem, LPT is the most popular one. The LPT
algorithm can be described as “Sorting the jobs in the nonincreasirtg order of their processing
times and then assigning the jobs one by one to the minimum loaded machine.” We first analyze
the error bound of LPT for Pm/r-a/C&. Recall that C* denotes the optimal makespan and C,
denotes the makespan corresponding to heuristic H.

Lemma 5: If sj > 0 for all j, then C&C* can be arbitrarily large even for the two-machine
problem.

Proof: Consider a problem with the following instance: p1 = p2 = 3, p3 = p4 = p5 = 2, ~1~ ~2 =

6, tl = t2 = n, and m = 2. The optimal solution is C* = 6. However, Cm = n+l, and hence
C&C* can be arbitrarily large as n approaches infinity. QED.

Therefore, as mentioned at the beginning of the paper, we assume that there is at least
one machine ahvays available. Namely, there exists at least one j such that sj = 5 = 0.

Note that in the LPT algorithm, assigning jobs one by one to the minimum loaded
machine is aiming for the job to be finished as earIy as possible. In the traditional Pm//C,,
problem, these two goals are equivalent. However, in our Pm/r-a/C,, problem, we may have
different results. In the remainder of this subsection, we will call the traditional LPT(assigning job
to the minimum loaded machine) LPTI. We call it LIT2 if we assign a job on the top of the list
to a machine such that the finishing time of that job is minimized.

Lemma 6: Cm,/ C* can be arbitrarily large, even for m = 2.

Proof: Consider a problem with the following instance: m = 2, sl= t,= 0, s2= 1, and t2 = n Also
let pI = 2 and p2 = 1. The optimal solution is Cc = 2 with J, assigned to M, and J2 assigned to
M,. The LPTl algorithm can result in C,= n+l with J, assigned to M2 and J2 assigned to Ml.
Hence C&C* can be arbitrarily large if n approaches infmity. QED.

Remark: If we apply LPT2 to the instance in the proof of Lemma 6, we will assign 3, to Ml and
J, toM2 withC,, =C*

408 CHUNG-YEE LEE

Theorem 3: For the Pm/r-a/c,, problem, (Cm2 - C*)/C* 5 l/2(1 -l/m), and the bound is tight.

Proof: Let Jk be the job with C, = Cm,. If pk > (1/2)C*, then in the optimal solution, there is at
most one job from {J1,...Jk) on each machine. Also in LPTZ, let Mj be the machine that contains
Jb then Mj contains only Jk Hence we have Cm, = C*. Now suppose that pk I (1/2)C*. Note
that there is no idle time before Ck - pk. Furthermore, since we assume that there is at least one
machine that is always availabIe, there must be at feast one machine which is busy up to Ck - pk.

ck-pks {(kPi)-pk+T [(ck-Pk-sj)+-(ck-Pk-ti)+l)~~
,=I &I

where (Ck - pk - 3)+ - (Ck - pk -ti>+ is the unavailable time up to Ck - pk for q.

Therefore,

ck-(l-l/m)pl,~{(~pi)+~ [(Ck-pk-sj)+-(Ck-Pk-ti)f]}/mIC*.
,=I ,=I

We have C,,, = Ck
5 c* + (I-l/m)pk
SC* + (1 - llm)(l/2)C*.

m-l Zm-2 2m

J m+l 1
m tm

Figure 2a. Optimal Solution

MACHINE SCHEDULING WlTH AN AVAILABLY CONSTRAINT 409

M2

1

Jl J m+l I
zm-I 3m-I

Figure 2b. LPT Solution

To show that the bound is tight, consider a problem with the following instance: there are
n jobs to be assigned to m machines with n = m+l and
$=2m-2 andq=Q-jforj=l,...,m-l,s,,,=t,=O,
pi = 2m-i for i = l,...,m-1,
pm = pm+1 = m.

In the optimal solution we will assign Ji to I$ for i = l,...,m and then Jm+, to M,,, with
makespan C* = Zm(see Figure 2a). However, If we apply the LPT2 algorithm we may assign J,
to M,, Ji+] to I$ for i = l,...,m-1, and then Jmm+, to M, with makespan Cm2 = 3m-l(see Figure
2b). Hence (C,, - C*)‘C* = l/2 (I- l/m). QED.

3.2.2. PZ/r-a/(cw&)

The problem PUr-al(Zw$i) is NP-hard, because l/r-d(Zw&i) was shown in Theorem 1
to be NP-hard. For the special case where si = 0 for all j and wi = 1 for all i, Kaspi and Montreuil
(1988) and Liian (1991) showed that SPT is an optimal policy.

Dynamic Programming for P2/r-aEwiCi

Note that Lemma 4 is true for each machine in this case. Hence we can solve the problem
in pseudo-polynomial time by dynamic programming. Without loss of generality, assume that MI
is available all the time.

410 CHUNG-YEE LEE

Reindex the jobs into WSPT order.

Define P(i, vI, v2) as the minimum total weighted flow time if we have scheduled jobs from
J, up to Ji, with the total processing time finished on Ml as v,, the total processing time on
M2.hefore s2 as v2, and the first job on M2 that finishes after t2 starts at time s.

fv.vl.vJ=
I

mio(f’(i.~-p,.~)+w,,vl.l’(i,~,~-p,)+w,~~~(i,~,~)+w,~~+~-~-~+~~-~~~) tfr+n- Vl-VI=-S,

min(f(I.vl-P,.urf+w,vl.~(i.ll.~-p,)+w,~) orknvise.

where s = ~2 - P~...,s~, Pm= max{Pi: i =I,...,n},
i = l,..., il, and
vI = 0 ,..., MS, v2 = 0 ,..., min{MS-vl,s).

v~ondition: For each s,

WP, if Y, = p, andv, = 0

7 (1, VI, v2) =
WI P, ifv,=OandY2=p,

WI 1s + P, + (t* - sdl ry ~,=0,~2=Oands+p,>~z
m otherwise

ODiimd solution: Min P(n,v,,v2) over all s = s2 - p -..., s2, vf = O,.. MS, and vz = 0 ,...,
min{MS-v],s}.

Justification: For job Ji we can either assign to M, or to M, and finished before s2, or to M2 and
finished after s2 as shown in the three terms of the equations.
Comnlexity: O(n .MS es2 up,,&

4. THE NONRESUMABLE AVAILABILITY CONSTRAINT

4.1 Single Machine Problems

4.1.1. l/m--a/C,,

It can be shown easily that I/nr-a/C,, is NP-hard by transforming the Partition Problem
to this problem. Note also that, as mentioned earlier in the paper, we have only allowed a single
disruption for each machine. However, if we allow multiple periods of maintenance, then the
problem becomes NP-hard in the strong sense. This can be proved by transforming the 3-Partition
problem. Following is a brief sketch of the proof. Given a 3-Partition problem with 3n jobs and B

MACHINE SCHEDULING WITH AN AVAILABILITY CONSTRAINT 411

as the size of each partition. We generate an instance for our scheduling problem, where there are
3n jobs, each having a size corresponding to 3-partition problem, and the maintenance periods are
[(2i-l)B, 2iB], i =l,..., n-l. It can be seen easily that there exists a solution to the 3-Partition
problem if and only if there exists a schedule for our problem with makespan equal to (2n-l)B.

Theorem 4: If we order the jobs in the LPT order, assigning to the machine as many jobs as
possible before sl, and then assigning the remaining jobs after t, in arbitrary order, then (Cm -
C*)/C* 5 l/3, and the bound is tight.

Proof: We consider two cases:

Case (i): p1 > s1.

(ia): If p2 > s, then Cc 2 pI + p2 + tl > 3s,. Since Cm - C* I ~1, we have (Cm -C*>/C*
2 I/3.

(ib): If p2 I s, and n = 2, then C,, = tl + pr =C*. If p2 5 sl and n > 2, then Cm - C* I p3
and C* z p, + p2 + p3 2 3p3, and hence (Cm- C*>K* I l/3.

Case (ii): p1 5 so.
Ifn = 2, then it is obvious that Cm = C*. Hence we discuss the case with n > 2.

(iia): If pI + p2 I ~1, then Cm - c* s p3 and C* 2 pr + p2 + p3 2 3p3, and hence (CM -
c*yc* 5 l/3.

(iib): If pI + p2 > s,, and pI + p3 I ~1, then Cm - C* s p3 ad C* 2 PI + p2 + p3 2 3P3,
and hence (Cm - c*yc* I 113. If p, + p2 > sl, and PI + p3 > ~1, then C&T - C*) 2

S, - p, < p3. Since C* ?r pl + p2 + p3 2 3p3, we (Cm - C*)/C* 2 l/3.

The following example shows that the bound is tight. Consider an instance with p, = n+l,
p2 = p3 = n, and sI = 2n, tl = 2n+l. The LPT algorithm will schedule the jobs in J,, J2 and J3
sequence with makespan equal to 4n+l The optimal solution will sequence the jobs as JI, J3 and
then J, with makespan equal to 3n+2. Hence (C,, - C*)/C* approaches l/3 as n approaches
infinity.

4.1.2. linr-aLI,,, l/nr-aLEUi, and l/nr-a/CwiCi

Since l/nr-a/C,, is NP-hard, hence llnr-a/L,, and l/nr-a/Xvi are also NP-hard.
However, the following two lemmas show that the classical approach can be applied here with
small error.

412 CIWNG-YEE LEE

Lemma 7: Ifwe apply Moore and Hodgson’s algorithm to solve l/m-a/cUi problem, then P(bIR)
5 P*(NR) + 1, where P(NR) denotes the corresponding number of tardy jobs and P*(NR) is the
optimal number of tardy jobs.

.-.

Proof: Let P*(R) denote the optimal number of tardy jobs for the resumable case. Note that
P*(R) < P*@IR) since we can shift those jobs finished afler tl of the nonresumable problem to the
ieft to fili the gap and have a feasible solution for the resumable problem with at ieast the same
number of non-tardy jobs.

If we apply Moore and Hodgson’s algorithm to solve the resumable problem and delete
the job that started before s, and finished after t, and shift all the later jobs to start at tr, this is a
feasible solution to the nonresumable problem. Let the corresponding number of tardy jobs be P.
Hence P < P*(R) +1 I P*(NR) +l. If we apply Moore and Hodgson’s algorithm to solve l/~-a/c

Vi problem, we will get a result no worse than P. Hence P(NJK) I P 5 P*(NR) +l. QED.

Lemma 8: If we apply EDD algorithm to solve UN-dL,, problem then L,, - L,,,,’ s p-
where prmu= {pi: i=l,..., n}.

Proof: This can be proved by noting that the maximum idle time before sI cannot be greater than
pmar and the fact tbat EDD is optimal for the resumable case. QED.

Adiri et al(1989) and Lee and Liman (1991) show that l/nr-a/Xi is NP-hard. Lee and
Liman prove that the error bound of applying SPT is 2/7. Now we consider our problem l/~-a/I

wiCi. This problem is obviously NP-hard. Furthermore, the example provided in the proof of
Lemma 2 for the resumable case can be modified and applied here to show that the error bound
of applying WSPT algorithm can be arbitrarily large.

Lemma 9: For the l/~-a.Ew~C~ problem, (Fw (WSPT) / F,*) can be arbitrarily large even if wi =
pi for all i.

4.2 Parallel machine Problems

4.2.1. Pmfnr-a/C,,

Since the problem is NP-hard we analyze two most popular heuristics; List Scheduling and LPT.

List Scheduline(LS): Given an arbitrary order ofjobs, assign the job to the machine such that
the job can befinished a.~ early aspossible.

MACHINE SCHEDULING WITH AN AVAILABILLITI CONSTRAINT

Theorem 5: C,&* I m, where m is the number of machines.

413

P.roof: Recall we assume that at least one machine is always available. Hence Cu I C(Pi) I m((
CP,)/m) 5 mC*. To show that the bound is tight, consider an example with the following
instance: p1 = p2 = . ..= pm =I, pm+1 = pm+2 = . ..= p2,,,-1= p2,,, = II, SI= t, = 0, and Si = n, ti = nz
for i = 2,...m. Using list scheduling, we may assign Ji to Mi for i = 1,2,...,m, and the remaining
jobs are all assigned to M,, with makespan equal to mn+l. However, in the optimal solution we
should assign Jm+i to Mi for i = l,...,m, and assign the remaining J1,...J,,, to MI with equal to n+m.
C,/C* approaches m as n approaches infinity. QED.

We now apply the LPT algorithm to our problem. Note that the sequence on any machine
may not be in the LPT order. The reason is that we may not be able to assign a large job to be
finished before sfi yet a small job which was assigned later may be able to finish before si

Theorem 6: C&C* I (m+1)/2 and the bound is tight.

Proof: Let Jk be the job such that C, = C, First note that deleting all jobs that are assigned
after Jk will not affect the worst case error bound. Note also that if 3 s Cb then the idle time on
Mi before sj is not greater than pk. Furthermore, if si is smaller than plo then this machine can be
deleted without affecting the worst case error bound. Hence we assume that each machine has at
least one job before 3.

If pk > (1/2)C*, then similar to the proof of Theorem 3, it can be shown that Cm = C*.
Suppose that pk I (1/2)C*. If Ck > sj then the idle time of Mj before sj is at most pb and if Ck I sj
then the idle time of Mj before C, is at most pk. Let t be the time instant such that the sum of the
available time for all machines up to t is equal to Cp,. Namely

($PJ = mt - 2 10 - sjl+ - 6 - tj)+l.
j=l

where (t - sj)+ - (t -5)’ is the unavailable time up to t for Mj

Therefore, C* 2 t. Note that at least one machine is always available. It can be checked that Ck
< t + (m - 1)~~ This is true because in LPT schedule, after t we have at most (m - l)pk to be
processed and we at least can put all of them on Ml and end up with a makespan not greater than
t + (m - 1)~~. Hence C 5 C* + (m - 1)(1/2)C* = [(m + 1)/2]C*.

To show that the bound is tight, consider a problem with the following instance.
pi = n + m - i for i = 1, 2, .., m - 1,
pi = n for i = m, m + l,..., 2m.
Alsop=2n+m-j-1and~=sj+nzforj=1,2 ,..., m-l. s,=t,,,=O.

414 CHUNG-Y!3 LEE

Assume that n > m2. If we apply the LPT algorithm, we may assign Jr to Mr for i = 1, .., m - 1
and the remaining jobs to M,,, with makespan Cm= (m + 1)n. However, in the optimal solution,
we will assign Ji+, and Jm+i to Mi for i = l,..., m - 1, and J, and J,,,, to M,,, with a makespan C* =
2n + m - 1. Hence C&C* approaches (m + 1)/2 as n approaches infmity.

_~
Hence the bound is

tight. QED.

42.2. PYnr-aEwiCi

Since the single machine problem, l/nr-a/cw,Ci, is NP-hard, our problem is also NP-hard.
The special case with wi = 1 for all i, has been studied under different availability constraints
environments. Lee and Liman (1993) study the P2/nr-a/(CCi) problem with t2 = infinity. They
prove that the problem is NP-hard and solved it with a dynamic programming algorithm. They
also provide a SPT-based heuristic and showed that the error bound is l/2. Mosheiov(1994)
studies Pm/r-a/&) under the condition that Mj is available in the interval [xi, yi] where 0 I xi <
yi, and shows that SPT is asymptotically optimal as the number ofjobs approaches infinity.

Assume that M, is available all the time. Similar to that for PUr-alcwiCi ,the following
dynamic programming can solve our problem optimally. Note that the complexity is smaller than
that for P2ir-mwiCi.

Reindex the jobs into WSPT order.
Define f(i, VI, v2) as the minimal total weighted completion time if we have assigned jobs
J,,..., Ji, total processing time of M, as v, and the total processing time of M2 before s2 as

VP

where i = l,..., n, vl = 0 ,..., MS, v2 = 0 ,..., min{MS - VI, sz}.
Initial Condition:

WI P,

f(l.v, rv2) =

i

WI PI
WI (P, + f2)
m

1yv,=p,andv2=0
ifv,=Oandvz=p,
if v,=om7dv,=o

othewise

Complexity: O(nMSs2).

MACHINE SCHEDULING WITH AN AVAILABIJJTY CONSTRAINT 415

5. CONCLUSION

Most literature in scheduling assumes that machines are available simultaneously at
all times. However, this availability may not be true in real industry settings. In this
paper, we assume that the machine may not always be available. This happens often in the
industry due to a machine breakdown (stochastic) or preventive maintenance
(deterministic) during the scheduling period. We study the scheduling problem under this
general situation and for the deterministic case.

This paper is part of an on-going research on the machine availability constraint
problems. In this paper, we contentrate on the extension of basic theoretical results in the
scheduling literature. We have provided an extensive study for the machine scheduling
problem with an availability constraint under diierent performance measures (makespan,
total weighted completion time, tardiness, and number of tardy jobs) and diierent machine
situations (single machine and parallel machines). Most problems are NP-hard excepted
for several single machine resumable problems. In most NP-hard problems, we develop
pseudo polynomial dynamic programming to solve them optimally. Furthermore, heuristic
methods, which are important for practical applications, are provided and their worst case
error bounds are also analyzed.

Several extensions are in progress, which include (i) the semi-resumable case
where some extra setup time may be required when a job is resumed, and (ii) more
complicated job shop and open shop scheduling, (iii) parallel machine scheduling
environments with partially overlapping preventive maintenance periods on different
machines, (iv) the problem with more than one maintenance intervals, (v) combining job
sequencing with maintenance scheduling.

References:

Adiri, I., Bruno J., Frostig E., and A.H.G. Rinnooy Kan, “Single Machine Flow-Time Scheduling
with a Single Breakdown,” Acta Infrmatica, 26, (1989), pp. 679-696.

Baker, K., Elements o/Sequencing and Scheduling, (1993), unpublished manuscript.
Blazewicz, J., K. Ecker, G. Schmidt, and J. Weglarq Scheduling in Computer and

Manufacturing Systems, Springer-Verlag, 1993, New York.
Garey M. R, and D. S. Johnson, Computer and IntractabiQ: A Guide to the Theory of HP-

Completeness, W.H. Freeman and Company, 1979, New York.
Graves, S. C, “A Review on Production Scheduling,” Operations Research, 29, (1981), pp. 646-

676.

416 CHUNG-YfZELEE

Herrmann, J., C.-Y. Lee, and J. Snowdon, “A Classification of Static Scheduling Problems,” in
Complex@ in Numerical Optimization, P. M. Pardalos (ed.), (1993), pp. 203-253, World
Scientific.

Kaspi, M. and B. Montreuil, “On the Scheduling of Identical Parallel Processes with Arbitrary
Initial Processor Available Times,” Research Report 88-12, School of Industrial
Engineering, Purdue University, 1988.

Kraemer, F., ad C.-Y. Lee, “Common Due-Window Scheduling,” Production and Operations
Management, 2, (19931, pp.262-275.

Lawler, E.L., J. K.,Lenstra, AH.G. Rinnooy Kan, and D. Shmoys, “Sequencing and Scheduling:
Algorithms and Complexity,” in Hamibook in Operations Research and Management
Science, Vol. 4: Logistics of Production and Inventory, S.S. Graves, AH.G. Rinnooy Kan,
and P. Zipkin (eds.), pp.445-522, North-Holland, New York, 1993.

Lee, C.-Y., “Parallel Machines Scheduling with Non-Simultaneous Machine Available Time,”
Discrete AppliedMathematics, 30,(1991), pp. 53-61.

Lee, C.-Y., “IvEnimizing the Makespan in the Two-Machine Flowshop Scheduling Problem with
an Availability Constraint,” (1995), submitted for publication.

Lee, C.-Y., and S. D. Liman, “Single Machine Flow-Time Scheduling With Scheduled
Maintenance,” Acta Znformatica, 29, (1992), pp. 375-382.

Lee, C.-Y., and S. D. Liman, “Capacitated two-parallel machines scheduling to minimize sum of
job completion times,” Discrete AppliedMathematics, 41, (1993), pp. 21 l-222.

Lei, L., and T.-J. Wong, “The Minimum Common-Cycle Algorithm for Cyclic Scheduling of Two
Material Handling Hoists with Time Window Constraints,” Management Science, 37,
(1991), pp.1629-1639.

Liman, S., Scheduling with Capacities and Due-Dates, Ph.D. Dissertation, Industrial and Systems
Engineering Department, University of Florida, 1991.

Morton, T. E., and D. W. Prentice, Heuristic Scheduling Systems, John Wiley & Sons, Inc. New
York, 1993.

Mosheiov G., “Minimizing the Sum of Job Completion Times on Capacitated Parallel Machines,”
Mathi. Comput. Modelling, 20, 1994, pp.91-99.

Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Prentice Hall, 1995, Englewood
Cliffs, New Jersey, 1995.

Sahni, S., “Approximation Algorithms for the O/l Kanpsack Problem,” Journal of the Association
for ComputingMachinery, 20, 1975, pp. 115-124.

Schmidt G., “Scheduling Independent Tasks with Deadlines on Semi-identical Processors,”
Journal of OperationalResearch Society, 39, 1984,271-277.

Tanaev, V. S., Y. N. Sotskov, and V. A Strusevich, Scheduling Theory. Multi-Stage Systems,
Kluwer Academic Publishers, 1994, The Netherlands.

