
MACHINE SCHEDULING WITH AN AVAILABILITY 
CONSTRAINT 

Chung-Yee Lee- 
Department of Industrial and Systems Engineering 

University of Florida 
Gainesville, FL 326 11 

February 1995 
Revised: July 1995 

This research was supported in part by NSF grant DDM 9201627 

ABSTRACT 

Most literature in scheduling assumes that machines are available simultaneously at all 
times. However, this availability may not be true in real industry settings. In this paper, we 
assume that the machine may not always be available. This happens often in the industry due to a 
machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling 
period. We study the scheduling problem under this general situation and for the deterministic 
case. 

We discuss various performance measures and various machine environments. In each 
case, we either provide a polynomial optimal algorithm to solve the problem, or prove that the 
problem is NP-hard. In the latter case, we develop pseudo-polynomial dynamic programming 
models to solve the problem optimally and/or provide heuristics with an error bound analysis. 

1. INTRODUCTION 

Due to the popularity of Just-In-Tie philosophy and Total Quality Management concept, 
on-time delivery has become one of the crucial factors for customer satisfaction. Scheduling plays 
an important role in achieving on-time delivery. In the last four decades, many papers have been 
published in the scheduling area, (see for example, survey papers by Graves(l981), Lawler, et 
al(1993) and Herrmann, Lee and Snowdon(l993)). Recently this area has become even more 
popular. This popularity can be seen from the fertile publication of related books such as Baker 
(1993), Blaczwicz et al. (1993) Morton and Pentico (1993), Tanaev, Sotskov and Strusevich 
(1994) and Pinedo (1995). 

Journal of Global Optimization 9: 395-416, 1996. 
0 1996 Kluwer Academic Publishers. Printed in the Netherlands. 
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Most literature in scheduling assumes that machines are available simultaneously at all 
times. However, this availability may not be true in real industry settings. In this paper, we 
assume that the machine may not always be available. This happens often in the industry due to a 
machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling 
period. We study the scheduling problem under this general situation and for the deterministic 
case. 

We assume that machine j is unavailable during the period from sj to tj (0 2 sj 5 tj). 
Namely, we assume that there is only one unavailability period during the scheduling horizon for 
machine j. Since we are studying the deterministic model, it is reasonable to assume that there is 
only one preventive maintenance during the scheduling horizon. Furthermore, we assume that for 
the multiple machines problem, one machine is always available. Note that the special case with sj 
= 0 means that machine j is not available until 5. This happens for instance in the case where the 
machine continues to process those unfinished jobs that were scheduled in the previous planning 
period. 

Although this problem is important as it happens often in industry, there are only a few 
articles in the scheduling area that deal with this problem. Schmidt(l984) studies an n job m 
parallel machine scheduling problem where each job has a deadline and each machine has different 
wai!abilhy intervals The purpose is to construct a feasible pre-emptive schedule. He presents an. 
O(nmlogn) time algorithm to find a feasible pre-emptive schedule whenever one exists. Adiri et 
al. (1989) consider the single machine scheduling problem with the objective of minimizing the 
total completion time where the machine is not available during some intervals. They studied both 
stochastic case where the location and duration of the unavailability periods are random, and the 
deterministic case where the machine unavailability is known in advance. For the deterministic 
case they show that the problem is NP-hard if there is only one unavailability during the 
scheduling period and if a job did not finish before the machine unavailability then the job needs to 
be restarted again. Lee (1991) studies the parallel identical machines scheduling problem of 
minimizing the makespan where machines may not be available at time zero; i.e. sj = 0 and 9 2 0 
for all j. He shows that the classical Longest Processing Time (LPT) algorithm will have a tight 
error bound l/2,. He then provides a modified LPT algorithm with error bound equal to l/3. 
Kaspi and Montreuil (1988) and Liman (1991) show that the Shortest Processing Time (SPT) 
algorithm is an optimal policy for multiple machines total completion time problem with non- 
simultaneous machine available times(9 = 0 for all j). Lee and Liman (1992) study the 
deterministic model of the problem of Adiri et al. (1989). They provide a simpler proof of NP- 
hardness and show a tight error bound for the SPT heuristic. Lee and Liman (1993) study the 
two-parallel-machine scheduling problem of minimizing the total completion time where one 
machine is not available from a particular instant, i.e. s1 = t, = 0 and st > 0, tZ = 0~. They prove 
that the problem is NP-hard and use dynamic programming to solve it. Mosheiov(1994) studies 



MACHINE SCHEDULING WITH AN AVAILABILI-IY CONSTRAINT 397 

the same problem under the condition that machine j is available in the interval [xi, yj] where 0 < 
xi < yj. He shows that for the m-machine problem SPT is asymptotically optimal as the number of 
jobs increases. 

A different but somehow related problem is the scheduling problem with time windows, 
In such problems, each job should be processed within certain window(see for example, Lei and 
Wong 1990 and Kraemer and Lee 1993). Namely, the availability constraint is imposed on jobs 
rather than machines. 

In this paper, we study the problem for different performance measures (makespan, total 
weighted completion time, tardiness, and number of tardy jobs) and different machine situations 
(single machine and parallel machines). In each case, we either provide a polynomial optimal 
algorithm to solve the problem, or prove that the problem is NP-hard. In the later case, we 
develop pseudo-polynomial dynamic programming models to solve the problem optimally and/or 
provide heuristics with an error bound analysis. Please see Table 1 for a summary. This work is 
part of on-going research on the machine availability constraint problem. In the companion paper, 
Lee (1995) studies the two-machine flowshop scheduling problem with an availability constraint 
on one machine and the objective of minimizing makespan. He proves that the problem is M-hard 
and proposes pseudo-polynomial dynamic programming to solve the problem optimally. He also 
provides two O(nlogn) heuristics with an error bound analysis. The first (second) heuristic is used 
to solve the problem with the availability constraint imposed on machine 1 (‘2): and has a worst 
case error bound of l/2 (l/3 respectively). 

Two cases, resumable and nonresumable, are discussed in this paper. We call a job 
resumable ifit cannot finish before the unavailable period of a machine and can continue after the 
machine is available again. On the other hand, we call it nonresumuble if it has to restart, rather 
than continue. In the next section, we first define the notation. We then deal with the resumable 
and the nonresumable cases in Section 3 and 4 respectively. Section 5 briefly describes future 
research topics. 
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Table 1 
Summary of Complexity Classification 
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I 

Problem 
IIMiXi 

l/r-a/C,, 

l/r-a/L- 

I/r-a/W, 

l/r-a/Zw,Ci 

Pm/r-a/C,, 

PUr-aEw,Ci 

F2/r-a(M,)/C,, 

Fzlr-a(M,)/C,, 

Complexity Solution Reference 
P SPT 3.1.1. 

P Arbitrary Sequence 3.1.1. 

P EDD 3.1.1. 

P Moore-Hodgson Algorithm 3.1.1. 

NP Dynamic Programming, 3.1.2. 

even if w,-Ti Heuristics and Error Bounds 
NP Heuristics and Error Bounds 3.2.1. 

NP Dynamic Programming 3.2.2. 

NP Dynamic Programming, Lee (1995) 
Heuristics and Error Bounds 

NP Dynamic Programming, Lee (1995) 

l/M-a/c,, 

Heuristics and Error Bounds 

NP Heuristics and Error Bounds 4.1.1. 

l/M-a/L,, NP Heuristics and Error Bounds 4.1.2. 

l/M-a/zui NP Heuristics and Error Bounds 4.1.2 

l/nr-a/cw,Ci 
I  I  

NP Heuristics and Error Bounds 1 Adiri.et.al(l989) 
1 Lee and Liman( 199 1 

PdN-a/c,, 

P2hr-a/xwici 

NP * Heuristics and Error Bounds 4.2.1. 

NP Dynamic Programming 4.2.2. 

FZ/nr-a(M,)/C,, 

F2/nr-a(MJ)/C,, 

NP Dynamic Programming Lee (1995) 
Heuristic and Error Bound 

NP Heuristic and Error Bound Lee (1995) 

2. NOTATION 

We are given m machines and n jobs with the following notation. 

Ji : Job i, i = l,..., n. 

Pi : Processing time for Ji. 

MS = k p, , total processing time of n jobs, 
i=l 
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Ai = ip,, the sum ofprocessing time ofjobs in (Jl, Jz,....,Ji}, 
k=I 

4 : Due date for J? 

ci : The completion time for Jb 
wi . . Weight for Ji. Hence. xwiCi is the total weighted completion time. 

Li : Lateness for Ji, Li = Ci - dp 

%7X : Makespan = Max(C, i = l,..., n.} 

Lax =Max{Li, i = I,..., n.} 

ui = 1, ifLi > 0, and 0 otherwise. Hence CU; denotes total number of tardy jobs. 

Mi : Machine j, j = l,..., m. 
So t,. : Mj is unavailable from sj to fi for all j, where 0 I 3 I $ 

Jlkl : The k-th job in a given sequence. 

Whenever C,, is the performance measure, we use C* to denote the optimal makespan and use 
C, to denote the makespan of the problem if we apply heuristic H to it. To be concise, we follow 
the notation of Pinedo (1995), extended to include resource constra nts. This notation consists 
of three fields a/p/y, where a denotes the machine condition, p denotes problem characteristics 
and yrepresents the performance metiiire to be optimized. In particular, a = 1 and P denote 
single machine and parallel machines respectively. The second field can represent dynamic 
arrivals, special precedence constraints or special availability constraints, and the third field, y, can 
be C,, L,, EwiCi or CUi. In this paper, we will use r-u in the second field to denote a 
resumable availabiiiry constraint, where M, is r.ct avaiiabie fiom sj LO tj for aCj *arid z job is 
resumable ifit cannot be finished before So Similarly, p = nr-a denotes a nonresumable availability 
constraint. For example, l/r-aEwiCi:denotes the problem of minimizing total weighted 
single machine with a resumable availability constraint. 

3. THE RESUMABLE AVAILABIIXIY CONSTRAINT 

In this section, we study the complexity, and provide algorithms to minimize different 
objective tinctions for different problems with a resumable availability constraint. In particular, 
we discuss the single machine and parallel machine problems. 
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3.1 Single Machine Problems 

CHUNG-YEE LEE 

3.1.1. l/r-a/C,, l/r-a/cCi, l/r-a/L- and l/r-tilJi 

It can be checked by a simple job exchange scheme that for single machine problems, l/r- 

G?&?XY l/r-a/& and l/r-a/L,, can be solved optimally by any sequence, the Shortest 
Processing Tie (SPT) algorithm(sequencingjobs in fhe nondecreasing order ofpi), and the 
Earliest Due Date (EDD) rule(sequencingjobs in the non&creasing order ofdi), respectively. 

The l//cu, problem can be solved by Moore-Hodgson’s algorithm (Baker 1993); restated 
as follows for convenience. 

Moore-Hodeson’s algorithm for l/EUi 

Step 0: Set N= (JI, J,...J,,). 
Step 1: Sequence the jobs of N in EDD order. If there is no tardy job in N then stop. Otherwise, 

find the first tardy job, say Jlkl,. Among the first k jobs find the job with largest processing 
time, delete it from N and assign it at the end of the sequence. Continue until no tardy 

--jobs exist in set N. 

For our l/r-tiUi problem, we can apply Moore-Hodgson’s algorithm to solve it optimally 
by noting that for those jobs finished after sl, we need to add the unavailable time period (tl- sl) 
to their completion times. 

3.1.2. l/r-a/cWiCi 
It is well known that l//c(wiCi) can be solved optimally by the WSPT(Weighted Shortest 

Processing Time) algorithm (sequencing jobs in the nondecreasing order of pbi)(see for 
example, Pinedo 1995). However, it is interesting to note that addition of the availability 
constraint will make this problem NP-hard. We will prove this by transforming the Partition 
Problem, a well-known NP-hard problem (Garey and Johnson 1979), into our problem. 

Since we will use the Partition Problem for the proof of NP-hardness of several problems 
studied in this paper, we first state the Partition Problem. 

Partition Problem 

Instance: A finite set of positive integers al,al,...,a,, which total to 2A. 

Question: Can this set be partitioned into two disjoint subsets such that the sum of each subset is 
equal to A? 
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For any schedule o, let S2 be the set ofjobs that finished after tl and let Jtfl be the i-th job 
in the schedule. Before we prove the NP-hardness of the problem, we state the following property 
that will be used later. 

Property: For any schedule cr, the corresponding total weighted completion time is given by 

Proof: Suppose that the first i jobs finished no later than t, and the remaining jobs finished after 
tl. Namely, Jli+,I is the first job in S2. Then we have 

F, (0) = W[I]P[I] + W[Z] @[,I+ P[2]) + .-. + W[i] @[I)+ PI21 + .-. + l$]) 
+ Wli+~l (PY~ Q21+ *** + p[i+J] f tJ -  SJ> + -em + “‘[“I (P[Jp P[2] + me* + P[n] + tJ - ‘J) 

= i+, w[rlp[~j + iFj w[i]Pbj + ( 2 w[+J-sJ) 
k-i+, 

QED. 

The following theorem shows that even the special case is M-hard, hence our problem is 
NP-hard. 

Theorem 1: I/r-aLZwiCi is NP-hard even if w, = pi for all i. 

Proof: We will prove the theorem by transforming the Partition Problem into our problem. Given 
the instance of the Partition Problem, generate an instance with n jobs for our problem. 

pi = a, i =l,..., n. 
wi = a,, i = l,..., n. 
sJ= A and tJ = 2A. 

Does there exist a schedule with total weighted completion time equal to B = $ at + c (ai aj) 
i=l i>j 

+ A2 ? 

j If there exists a partition SJ and S,, then schedule the jobs corresponding to S1 and then S2. 
Since ai = pi for all i, any sequence is a WSPT sequence. Since kF; = k$; =A, the last job 

1 1 
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in S.1 finishes at s, = A, and the total weighted completion time, by Equation (l), is equal to 

e Suppose that there exists a schedule with total weighted completion time 2 Cqz + C ai% 
i=I i>j 

+ AZ. Consider any schedule, let S, be the set ofjobs finished no later than tl and let S2 be the set 
of the remaining jobs. Again by Equation (I), the total weighted completion time is equal to 

n 
C ai + C aiaj + (tl - ~1) which also equals i at + C (aiaj) + 

i=l i>j i=l i>j 

hypothesis, there exists one schedule with total weighted completion time equal to B = ; at + 
i=l 

& (a+$ + A4 and h ence for such a schedule we must have C ak = A. Thus we have a 
k eSz 

partition. QED. 

Since the problem is NP-hard, it is justifiable to try a heuristic method. The most intuitive 
heuristic is the WSPT algorithm; hence, we will analyze its worst case error bound. Lel 
F&VSPT) and F,(WSPT, tr = s,) denote the total weighted completion time by using the WSPT 
algorithm to this problem with andwithout availability constraint reqectively, and let F,* denote 
the optimal total weighted completion time. 

Lemma 1: Jfthere exists a job Jj that started before s, and finished after tl in the WSPT 
algorithm then F,+,(WSPT) - F,* 5 w,(t] - s,). 

Proof: First note that the first two terms of Equation (1) are the total weighted completion time 
of the problem without the availability constraint. Hence these two terms can be minimized by the 
WSPT algorithm. Narneiy, F,(WSPT, t, = sl) is the minimum possible value of the fnst two terms 
of Equation (1). Note also that in the WSPT algorithm, we sequence the jobs in nondecreasing 
order of pi/wi , or equivalently nonincreasing order of wi/pr. We can consider wi/pi as the weight 
per unit processing time. Namely, the highest weighted job is assigned first in WSPT. Hence the 
total weight of jobs finished after tl in “any” schedule can not be less than 
r -I 

c wk - wj , where S,(WSPT) is the corresponding set S, of WSPT. Therefore, we 
kd2WSPT) J 

have 
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= F,(WSPT) - w,(tl - s,). 

Namely F,(WSPT) - F,* < w,(t, - sl). QED. 

Note that ifin the WSPT schedule there exists no job that started before s, and finished 

after tl, namely, there exists one job Ji with Ci = s,, then 1 1 cwk is the smallest possible 
k~,(wSPT) 

total weight we can get in S,, and hence the WSPT schedule is optimal. 

Corollary 1: If we apply the WSPT algorithm to the l/r-a/CwiCi problem and have one job Ji 
with Ci = s,, then the WSPT schedule is optimal. 

Lemma 2: F,(WSPT)/F,* can be arbitrarily large even ifwi = pi for all i. 

Proof:Letp1=wl=l,pt=w2=n,sl=n,t,=n + n*. Using the WSPT algorithm we may have 
J, fol!owed by J, with total weighted completion time, F,(WSPT) = 1-l -1 (nz :. t? + l).n. = rr’ Y 
ns + n + 1. However, in the optimal solution there should be J2 followed by J, with total 
weighted completion time, F,*= nn + (r-r2 + n + I).1 = 2n2 + n + 1. It can be seen that 
F,(WSPT)/F,* can be arbitrarily large as n approaches infinity. QED. 

It is interesting to observe, by (I), that in order to improve the error bound, we may want 
to “squeeze” as much weight as possible into (0,~~) which in turn is similar to the Knapsack 
Problem. Hence we may adopt those simple greedy heuristics used in the Knapsack Problem (see 
for example, Sal-6 1975). The following is the combine-algorithm for the greedy heuristics. 

Combine-Algorithm: 

(i) Use the WSPT algorithm, and let the corresponding objective value be F,,.(WSPT). 

(ii) Reindex the jobs in the WSPT order. Then assign jobs, as many as possible, to be processed 
in (0,~~). Assign the remaining jobs in the WSPT order. Let the corresponding objective 
value be F,. 

(iii) Reindex the jobs in a Largest Weight order, that is, WI 2 w2 zz . . . . t w,, and then assign jobs, 
as many as possible, to be processed in (0,~~). Reschedule those jobs in the WSPT order and 
also assign the remaining jobs in the WSPT order. Let the corresponding objective value be 

Fw2. 

(iv) Let F,(COh4B) = min { FflSPT), F,, F,}, 
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Theorem 2: F,(COMB)/F,* can be arbitrarily large. 

CJSUNG-YEE LEE 

Proof: Consider a problem with the following instance. 
PI = ~3 =... = pn = 1, P~+I = n, pn+2 = n2, 

w, = w2 =... = wn = n, w,,, = n, wn+2 = nz, 
s, = d + n and tl = I? + n2 + n. 

The optimal solution will sequence the jobs in J,,...,J,, Jn+2 and then J,,+I with total 
weighted completion time equal to (n(n+l)/2)n + (n2 + n)n2+ ( d + n2 + n+n)n = 2n4 + (5/2)n3 + 
(5/2)n2 (See Figure la). If we use Step (i) or Step (ii) of the Combine-Algorithm we may get, in 
both cases, the sequence J, ,..., J,, Jn+l and then J”+2 with a total weighted completion time equal 
to (n(n+l)/2)n + (2n)n+ (n3 + d + n + n)n2 = nj + n4 + (5/2)n3 + (5/2)n2 (See Figure lb). If we 
use Step (iii) of the Combine-Algorithm, we may get the sequence Jn+2, J,,+, and then J,,J,,...,J,,, 
with a total weighted completion time equal to (nq(nq + (n2 +n)n + (n3 + n2+ n +l)n+(n3 + n2+ n 
+2)n+ . ...+ (n3 + n2+ n +n)n = (n4 + n3 + n3 + ( n3 + n2 +n)d + (n(n+l)n)n = n5 + 2n4+ (5i2)n3 
+ (3/2)n2 (see Figure lc). Jn all three cases, we can see that F,(COMB)/F,* can be arbitrarily 
large 2s n approaches in!?ni!y. QEC. 

12 n n +n 2 n3 +n2+n n3 +n2+2n 

Figure la: Optimal Solution 

12 n 2n n2 +n n3 +n2+n n3 +n2+2n 

Figure lb: Schedule of Steps (i) and (ii) 

Figure lc: Schedule of Step (iii) 
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Theorem 2 implies that if we want to improve the error bound, a more complicated 
heuristic is required. Recall that Theorem 2 shows that our problem is NP-hard even if pi = Wi for 
all i. The following lemma shows that if pi = wi for all i then the error bound for using Step (iii) 
of the Combine-Algorithm is only 1. 

Lemma 3: Ifp, = wj for all i, and we use Step (iii) of the Combine-Algorithm, we will have (F,I 
- F,*)/ F,* < 1 and the bound is tight. 

Proof: Since pJwi = 1 for all i, any job sequence is in the WSPT order. Hence Lemma 1 is true 
for any sequence. Use Step (iii) of the Combine-Algorithm, and let Jibe the first job that cannot 
fit in before sI, The maximum error is not greater than p,{tl - sI). However, since we assign the 
jobs in a Largest Weight order, all the jobs assigned before Jj have weights no less than We Hence 
in the optimal solution there must exist at least one job, Jb with wk 2 wj and Ck > tl. Namely, F,* 
2 wktl 2 w;.t: - sr) > F, - F,*. To show that the bound is tight, consider a example with the 
following instance; 
pl = wl= n+l, 
pz=wz=n, 
p3=w3=n, 

sI = 2n and tl = 2n f n2. 
The optimal solution will sequence the jobs in J2, J3, and then J, with total weighted 

completion time equal to F,*= n2 + 2n2 + (n2+2n+n+l)(n +l)= n3 + 7n2 + 4n +l. If we use Step 
(iii) of the Combine-Algorithm we may get the sequence J,,J2,J3 with a total weighted completion 
time equal to F,, = (n+l)(n+l) + (“2 + 2n+l)n + (n2 + 2n+l+n)n = 2n3 + 6n2 + 4n +l. Hence 
(Fw2 - F,*)/ F,* approaches 1 as n approaches infinity. QED. 

Dynamic Programming for l/r-a/ CwjC, 

Now we find an optimal solution by using dynamic programming. We first establish an 
optimality property. 

Lemma 4: There exists an optimal solution such that those jobs finished no later than sl follow 
the WSPT order, and those jobs finished after si also follow WSPT order. 

Proof: This lemma can be proved by an exchange scheme. We omit the detailed proof here by 
noting that it is possible that in the exchange procedure, we may move one job finished after t, 
to end up finished before s,. In such a case, we can reorganize the order for those jobs finished 
before s, by the WSPT order without increasing the objective function, and Lemma 4 is true. 

QED. 
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Remark: Lemma 4 implies that we can first sort the jobs in the WSPT order and then apply 
dynamic programming to solve it, as we will do in the following. 

Dvnamic Promamming Algorithm 

Reindex the jobs into WSPT order, and recall that A, = i pj. 
j=l 

Define p&t) as the minimum total weighted completion time if we have scheduled jobs f+om 
II up to Ji, the total processing time finished before s1 is t, and the first job finished after tl 
starts at time s. 

f’(i,t)= min{/‘(i-1,t-p,)+wJ, f’(i-l,r)+W,[S+(Ar-~)+(1,-sr)l}, ifs+(A.-o>s, 
f’(i-1,r-p,)+wJ otherwise. 

where S = Si - n r-...>S], P -= mz{Pi: i =I rll ,..-1- ,, 
i=l ,...,n, and 
t = o,...,sp 

Initial Condition: For each s, 

1yt =p, 

yt=o 

otherwise 

Optimal solution: Min P(n,t) over all s = s1 - p -..., sI, and t = 0 ,..., s 

Justification: We can either assign job Ji to be finished before s, or after s,. The former case 
will result in the objective function P(i - 1, t - pi) + wit and the other case will result in the 
objective fimction P(i - 1, t) + w,(s+& - t + t, - sl). Note that we have tried all possible values of 
s and hence have covered all possible cases. 

and s, possible t in the fUnctional Complexity: Since there are p- possible s, n possible i, 
equation, the complexity is O(np,, asI,). 

3.2 Parallel Machine Problems 

3.2.1 Pm/r-a/C,,,, 

Note that the problem Pm//C,, where there is no availability constraint, is a classical 
parallel machine scheduling problem and is NP-hard. Since our problem is more general than 
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PldIC,, it is obviously NP-hard. A special case, where 3 = 0 for all j and 5 may not be zero, has 
been studied by Lee (1991). He shows that the classical LPT algorithm will have a tight error 
bound of l/2. He then provides a Modiied LPT (MLPT) algorithm with error bound equal to l/3. 
The MPLT treats each ti as a special job, and then applies the LPT algorithm to all jobs. 
Whenever, a machine may be assigned more than one such special job then an exchange rule is 
applied to ensure that there is at most one special job in each machine. Finally, all special jobs are 
sequenced fust in each machine. 

Among those heuristics for the Pm//C,, problem, LPT is the most popular one. The LPT 
algorithm can be described as “Sorting the jobs in the nonincreasirtg order of their processing 
times and then assigning the jobs one by one to the minimum loaded machine.” We first analyze 
the error bound of LPT for Pm/r-a/C&. Recall that C* denotes the optimal makespan and C, 
denotes the makespan corresponding to heuristic H. 

Lemma 5: If sj > 0 for all j, then C&C* can be arbitrarily large even for the two-machine 
problem. 

Proof: Consider a problem with the following instance: p1 = p2 = 3, p3 = p4 = p5 = 2, ~1~ ~2 = 

6, tl = t2 = n, and m = 2. The optimal solution is C* = 6. However, Cm = n+l, and hence 
C&C* can be arbitrarily large as n approaches infinity. QED. 

Therefore, as mentioned at the beginning of the paper, we assume that there is at least 
one machine ahvays available. Namely, there exists at least one j such that sj = 5 = 0. 

Note that in the LPT algorithm, assigning jobs one by one to the minimum loaded 
machine is aiming for the job to be finished as earIy as possible. In the traditional Pm//C,, 
problem, these two goals are equivalent. However, in our Pm/r-a/C,, problem, we may have 
different results. In the remainder of this subsection, we will call the traditional LPT(assigning job 
to the minimum loaded machine) LPTI. We call it LIT2 if we assign a job on the top of the list 
to a machine such that the finishing time of that job is minimized. 

Lemma 6: Cm,/ C* can be arbitrarily large, even for m = 2. 

Proof: Consider a problem with the following instance: m = 2, sl= t,= 0, s2= 1, and t2 = n Also 
let pI = 2 and p2 = 1. The optimal solution is Cc = 2 with J, assigned to M, and J2 assigned to 
M,. The LPTl algorithm can result in C,= n+l with J, assigned to M2 and J2 assigned to Ml. 
Hence C&C* can be arbitrarily large if n approaches infmity. QED. 

Remark: If we apply LPT2 to the instance in the proof of Lemma 6, we will assign 3, to Ml and 
J, toM2 withC,, =C* 
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Theorem 3: For the Pm/r-a/c,, problem, (Cm2 - C*)/C* 5 l/2(1 -l/m), and the bound is tight. 

Proof: Let Jk be the job with C, = Cm,. If pk > (1/2)C*, then in the optimal solution, there is at 
most one job from {J1,...Jk) on each machine. Also in LPTZ, let Mj be the machine that contains 
Jb then Mj contains only Jk Hence we have Cm, = C*. Now suppose that pk I (1/2)C*. Note 
that there is no idle time before Ck - pk. Furthermore, since we assume that there is at least one 
machine that is always availabIe, there must be at feast one machine which is busy up to Ck - pk. 

ck-pks {( kPi)-pk+T [(ck-Pk-sj)+-(ck-Pk-ti)+l)~~ 
,=I &I 

where (Ck - pk - 3)+ - (Ck - pk -ti>+ is the unavailable time up to Ck - pk for q. 

Therefore, 

ck-(l-l/m)pl,~{(~pi)+~ [(Ck-pk-sj)+-(Ck-Pk-ti)f]}/mIC*. 
,=I ,=I 

We have C,,, = Ck 
5 c* + (I-l/m)pk 
SC* + (1 - llm)(l/2)C*. 

m-l Zm-2 2m 

J m+l 1 
m tm 

Figure 2a. Optimal Solution 
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M2 

1 

Jl J m+l I 
zm-I 3m-I 

Figure 2b. LPT Solution 

To show that the bound is tight, consider a problem with the following instance: there are 
n jobs to be assigned to m machines with n = m+l and 
$=2m-2 andq=Q-jforj=l,...,m-l,s,,,=t,=O, 
pi = 2m-i for i = l,...,m-1, 
pm = pm+1 = m. 

In the optimal solution we will assign Ji to I$ for i = l,...,m and then Jm+, to M,,, with 
makespan C* = Zm(see Figure 2a). However, If we apply the LPT2 algorithm we may assign J, 
to M,, Ji+] to I$ for i = l,...,m-1, and then Jmm+, to M, with makespan Cm2 = 3m-l(see Figure 
2b). Hence (C,, - C*)‘C* = l/2 (I- l/m). QED. 

3.2.2. PZ/r-a/(cw&) 

The problem PUr-al(Zw$i) is NP-hard, because l/r-d(Zw&i) was shown in Theorem 1 
to be NP-hard. For the special case where si = 0 for all j and wi = 1 for all i, Kaspi and Montreuil 
(1988) and Liian (1991) showed that SPT is an optimal policy. 

Dynamic Programming for P2/r-aEwiCi 

Note that Lemma 4 is true for each machine in this case. Hence we can solve the problem 
in pseudo-polynomial time by dynamic programming. Without loss of generality, assume that MI 
is available all the time. 



410 CHUNG-YEE LEE 

Reindex the jobs into WSPT order. 

Define P(i, vI, v2) as the minimum total weighted flow time if we have scheduled jobs from 
J, up to Ji, with the total processing time finished on Ml as v,, the total processing time on 
M2.hefore s2 as v2, and the first job on M2 that finishes after t2 starts at time s. 

fv.vl.vJ= 
I 

mio(f’(i.~-p,.~)+w,,vl.l’(i,~,~-p,)+w,~~~(i,~,~)+w,~~+~-~-~+~~-~~~) tfr+n- Vl-VI=-S, 

min(f(I.vl-P,.urf+w,vl.~(i.ll.~-p,)+w,~) orknvise. 

where s = ~2 - P~...,s~, Pm= max{Pi: i =I,...,n}, 
i = l,..., il, and 
vI = 0 ,..., MS, v2 = 0 ,..., min{MS-vl,s). 

v~ondition: For each s, 

WP, if Y, = p, andv, = 0 

7 (1, VI, v2) = 
WI P, ifv,=OandY2=p, 

WI 1s + P, + (t* - sdl ry ~,=0,~2=Oands+p,>~z 
m otherwise 

ODiimd solution: Min P(n,v,,v2) over all s = s2 - p -..., s2, vf = O,.. MS, and vz = 0 ,..., 
min{MS-v],s}. 

Justification: For job Ji we can either assign to M, or to M, and finished before s2, or to M2 and 
finished after s2 as shown in the three terms of the equations. 
Comnlexity: O(n .MS es2 up,,& 

4. THE NONRESUMABLE AVAILABILITY CONSTRAINT 

4.1 Single Machine Problems 

4.1.1. l/m--a/C,, 

It can be shown easily that I/nr-a/C,, is NP-hard by transforming the Partition Problem 
to this problem. Note also that, as mentioned earlier in the paper, we have only allowed a single 
disruption for each machine. However, if we allow multiple periods of maintenance, then the 
problem becomes NP-hard in the strong sense. This can be proved by transforming the 3-Partition 
problem. Following is a brief sketch of the proof. Given a 3-Partition problem with 3n jobs and B 
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as the size of each partition. We generate an instance for our scheduling problem, where there are 
3n jobs, each having a size corresponding to 3-partition problem, and the maintenance periods are 
[(2i-l)B, 2iB], i =l,..., n-l. It can be seen easily that there exists a solution to the 3-Partition 
problem if and only if there exists a schedule for our problem with makespan equal to (2n-l)B. 

Theorem 4: If we order the jobs in the LPT order, assigning to the machine as many jobs as 
possible before sl, and then assigning the remaining jobs after t, in arbitrary order, then (Cm - 
C*)/C* 5 l/3, and the bound is tight. 

Proof: We consider two cases: 

Case (i): p1 > s1. 

(ia): If p2 > s, then Cc 2 pI + p2 + tl > 3s,. Since Cm - C* I ~1, we have (Cm -C*>/C* 
2 I/3. 

(ib): If p2 I s, and n = 2, then C,, = tl + pr =C*. If p2 5 sl and n > 2, then Cm - C* I p3 
and C* z p, + p2 + p3 2 3p3, and hence (Cm- C*>K* I l/3. 

Case (ii): p1 5 so. 
Ifn = 2, then it is obvious that Cm = C*. Hence we discuss the case with n > 2. 

(iia): If pI + p2 I ~1, then Cm - c* s p3 and C* 2 pr + p2 + p3 2 3p3, and hence (CM - 
c*yc* 5 l/3. 

(iib): If pI + p2 > s,, and pI + p3 I ~1, then Cm - C* s p3 ad C* 2 PI + p2 + p3 2 3P3, 
and hence (Cm - c*yc* I 113. If p, + p2 > sl, and PI + p3 > ~1, then C&T - C*) 2 

S, - p, < p3. Since C* ?r pl + p2 + p3 2 3p3, we (Cm - C*)/C* 2 l/3. 

The following example shows that the bound is tight. Consider an instance with p, = n+l, 
p2 = p3 = n, and sI = 2n, tl = 2n+l. The LPT algorithm will schedule the jobs in J,, J2 and J3 
sequence with makespan equal to 4n+l The optimal solution will sequence the jobs as JI, J3 and 
then J, with makespan equal to 3n+2. Hence (C,, - C*)/C* approaches l/3 as n approaches 
infinity. 

4.1.2. linr-aLI,,, l/nr-aLEUi, and l/nr-a/CwiCi 

Since l/nr-a/C,, is NP-hard, hence llnr-a/L,, and l/nr-a/Xvi are also NP-hard. 
However, the following two lemmas show that the classical approach can be applied here with 
small error. 
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Lemma 7: Ifwe apply Moore and Hodgson’s algorithm to solve l/m-a/cUi problem, then P(bIR) 
5 P*(NR) + 1, where P(NR) denotes the corresponding number of tardy jobs and P*(NR) is the 
optimal number of tardy jobs. 

.-. 

Proof: Let P*(R) denote the optimal number of tardy jobs for the resumable case. Note that 
P*(R) < P*@IR) since we can shift those jobs finished afler tl of the nonresumable problem to the 
ieft to fili the gap and have a feasible solution for the resumable problem with at ieast the same 
number of non-tardy jobs. 

If we apply Moore and Hodgson’s algorithm to solve the resumable problem and delete 
the job that started before s, and finished after t, and shift all the later jobs to start at tr, this is a 
feasible solution to the nonresumable problem. Let the corresponding number of tardy jobs be P. 
Hence P < P*(R) +1 I P*(NR) +l. If we apply Moore and Hodgson’s algorithm to solve l/~-a/c 

Vi problem, we will get a result no worse than P. Hence P(NJK) I P 5 P*(NR) +l. QED. 

Lemma 8: If we apply EDD algorithm to solve UN-dL,, problem then L,, - L,,,,’ s p- 
where prmu= {pi: i=l,..., n}. 

Proof: This can be proved by noting that the maximum idle time before sI cannot be greater than 
pmar and the fact tbat EDD is optimal for the resumable case. QED. 

Adiri et al(1989) and Lee and Liman (1991) show that l/nr-a/Xi is NP-hard. Lee and 
Liman prove that the error bound of applying SPT is 2/7. Now we consider our problem l/~-a/I 

wiCi. This problem is obviously NP-hard. Furthermore, the example provided in the proof of 
Lemma 2 for the resumable case can be modified and applied here to show that the error bound 
of applying WSPT algorithm can be arbitrarily large. 

Lemma 9: For the l/~-a.Ew~C~ problem, (Fw (WSPT) / F,*) can be arbitrarily large even if wi = 
pi for all i. 

4.2 Parallel machine Problems 

4.2.1. Pmfnr-a/C,, 

Since the problem is NP-hard we analyze two most popular heuristics; List Scheduling and LPT. 

List Scheduline(LS): Given an arbitrary order ofjobs, assign the job to the machine such that 
the job can befinished a.~ early aspossible. 
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Theorem 5: C,&* I m, where m is the number of machines. 
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P.roof: Recall we assume that at least one machine is always available. Hence Cu I C(Pi) I m(( 
CP,)/m) 5 mC*. To show that the bound is tight, consider an example with the following 
instance: p1 = p2 = . ..= pm =I, pm+1 = pm+2 = . ..= p2,,,-1= p2,,, = II, SI= t, = 0, and Si = n, ti = nz 
for i = 2,...m. Using list scheduling, we may assign Ji to Mi for i = 1,2,...,m, and the remaining 
jobs are all assigned to M,, with makespan equal to mn+l. However, in the optimal solution we 
should assign Jm+i to Mi for i = l,...,m, and assign the remaining J1,...J,,, to MI with equal to n+m. 
C,/C* approaches m as n approaches infinity. QED. 

We now apply the LPT algorithm to our problem. Note that the sequence on any machine 
may not be in the LPT order. The reason is that we may not be able to assign a large job to be 
finished before sfi yet a small job which was assigned later may be able to finish before si 

Theorem 6: C&C* I (m+1)/2 and the bound is tight. 

Proof: Let Jk be the job such that C, = C, First note that deleting all jobs that are assigned 
after Jk will not affect the worst case error bound. Note also that if 3 s Cb then the idle time on 
Mi before sj is not greater than pk. Furthermore, if si is smaller than plo then this machine can be 
deleted without affecting the worst case error bound. Hence we assume that each machine has at 
least one job before 3. 

If pk > (1/2)C*, then similar to the proof of Theorem 3, it can be shown that Cm = C*. 
Suppose that pk I (1/2)C*. If Ck > sj then the idle time of Mj before sj is at most pb and if Ck I sj 
then the idle time of Mj before C, is at most pk. Let t be the time instant such that the sum of the 
available time for all machines up to t is equal to Cp,. Namely 

( $PJ = mt - 2 10 - sjl+ - 6 - tj)+l. 
j=l 

where (t - sj)+ - (t -5)’ is the unavailable time up to t for Mj 

Therefore, C* 2 t. Note that at least one machine is always available. It can be checked that Ck 
< t + (m - 1)~~ This is true because in LPT schedule, after t we have at most (m - l)pk to be 
processed and we at least can put all of them on Ml and end up with a makespan not greater than 
t + (m - 1)~~. Hence C 5 C* + (m - 1)(1/2)C* = [(m + 1)/2]C*. 

To show that the bound is tight, consider a problem with the following instance. 
pi = n + m - i for i = 1, 2, .., m - 1, 
pi = n for i = m, m + l,..., 2m. 
Alsop=2n+m-j-1and~=sj+nzforj=1,2 ,..., m-l. s,=t,,,=O. 
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Assume that n > m2. If we apply the LPT algorithm, we may assign Jr to Mr for i = 1, .., m - 1 
and the remaining jobs to M,,, with makespan Cm= (m + 1)n. However, in the optimal solution, 
we will assign Ji+, and Jm+i to Mi for i = l,..., m - 1, and J, and J,,,, to M,,, with a makespan C* = 
2n + m - 1. Hence C&C* approaches (m + 1)/2 as n approaches infmity. 

_~ 
Hence the bound is 

tight. QED. 

42.2. PYnr-aEwiCi 

Since the single machine problem, l/nr-a/cw,Ci, is NP-hard, our problem is also NP-hard. 
The special case with wi = 1 for all i, has been studied under different availability constraints 
environments. Lee and Liman (1993) study the P2/nr-a/(CCi) problem with t2 = infinity. They 
prove that the problem is NP-hard and solved it with a dynamic programming algorithm. They 
also provide a SPT-based heuristic and showed that the error bound is l/2. Mosheiov(1994) 
studies Pm/r-a/&) under the condition that Mj is available in the interval [xi, yi] where 0 I xi < 
yi, and shows that SPT is asymptotically optimal as the number ofjobs approaches infinity. 

Assume that M, is available all the time. Similar to that for PUr-alcwiCi ,the following 
dynamic programming can solve our problem optimally. Note that the complexity is smaller than 
that for P2ir-mwiCi. 

Reindex the jobs into WSPT order. 
Define f(i, VI, v2) as the minimal total weighted completion time if we have assigned jobs 
J,,..., Ji, total processing time of M, as v, and the total processing time of M2 before s2 as 

VP 

where i = l,..., n, vl = 0 ,..., MS, v2 = 0 ,..., min{MS - VI, sz}. 
Initial Condition: 

WI P, 

f(l.v, rv2) = 

i 

WI PI 
WI (P, + f2) 
m 

1yv,=p,andv2=0 
ifv,=Oandvz=p, 
if v,=om7dv,=o 

othewise 

Complexity: O(nMSs2). 
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5. CONCLUSION 

Most literature in scheduling assumes that machines are available simultaneously at 
all times. However, this availability may not be true in real industry settings. In this 
paper, we assume that the machine may not always be available. This happens often in the 
industry due to a machine breakdown (stochastic) or preventive maintenance 
(deterministic) during the scheduling period. We study the scheduling problem under this 
general situation and for the deterministic case. 

This paper is part of an on-going research on the machine availability constraint 
problems. In this paper, we contentrate on the extension of basic theoretical results in the 
scheduling literature. We have provided an extensive study for the machine scheduling 
problem with an availability constraint under diierent performance measures (makespan, 
total weighted completion time, tardiness, and number of tardy jobs) and diierent machine 
situations (single machine and parallel machines). Most problems are NP-hard excepted 
for several single machine resumable problems. In most NP-hard problems, we develop 
pseudo polynomial dynamic programming to solve them optimally. Furthermore, heuristic 
methods, which are important for practical applications, are provided and their worst case 
error bounds are also analyzed. 

Several extensions are in progress, which include (i) the semi-resumable case 
where some extra setup time may be required when a job is resumed, and (ii) more 
complicated job shop and open shop scheduling, (iii) parallel machine scheduling 
environments with partially overlapping preventive maintenance periods on different 
machines, (iv) the problem with more than one maintenance intervals, (v) combining job 
sequencing with maintenance scheduling. 
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